Emoteq Corporation: Division of Allied Motion Technologies (9/27/2006) Pg 1 SEAGULL SB02300-E05

Winding (onstants *
-----------	------------

Parameter	Symbol	Unit	VALUE
Design Voltage	Vp	volt	43.000
Peak Torque, +/-25%	Тр	ozin Nm	220.898 1.560
Peak Current,+/15%	Ip	ampere	78.244
Torque Sensitivity +/-10%	Kt	ozin/rpm Nm/rpm	2.823 0.020
No Load Speed	Snl	rpm rad/sec	19679.819 2060.866
Voltage Constant +/-10%	Kb	v/Krpm v/rad/sec	2.088
Terminal Resistance +/-12%	Rm	Ohms	0.550
Terminal Inductance +/-30%	Lm	Mh	0.139
# Danfarmanga @ 20 00000			

^{*} Performance @ 20.000°C

Design Voltage	Vp	volt	43.000
Continuous Power Output @	Power	watt	54.515
		Horsepower	0.073
Temperature Rise:	Torque	ozin	4.915
75.507°C		Nm	0.035
COOLING :	Speed	rpm	15000.000
Ambient temperature	Iphase	amperes	2.370
20.000°C	I(dc-link)	amperes	1.685
	Efficiency	%	75.231

PC-BDC 6.5 for Windows Copyright SPEED Laboratory. 9/27/2006

Emoteq Corporation: Division of Allied Motion Technologies (9/27/2006) Pg $_2$ SEAGULL SB02300-E05

UNHOUSED	MECHANICAL			
Stator Stack OD	1.800 inch	45.720 mm		
Stator Stack Length (Machined)	0.500 inch	12.700 mm		
Stator ID	1.040			
No. Of Phases	3			
PHase Connection	WYE			
Length Over Coil (Maximum)	1.211 inch	30.759 mm		
End Turns OD (Maximum)	1.650 inch	41.910 mm		
End Turns ID (Maximum)	1.100 inch	27.940 mm		
Lead Wire Gage	20 AWG			
Lead Wire Length	12.000 inch	304.800 mm		
ROTOR OD	0.970 inch	24.638 mm		
TOrot ID	0.740 inch	18.796 mm		
Rotor Axial Leangth "B"	0.680 inch	17.272 mm		
No. Of Poles	8			

PC-BDC 6.5 for Windows Copyright SPEED Laboratory. 9/27/2006

High Speed Series

Brushless DC Motors

Connection Diagrams

Torque Sensitivity (K $_{\!\scriptscriptstyle T}$) is the ratio of the developed torque to the applied current for a specific winding. K $_{\!\scriptscriptstyle T}$ is related to the BEMF Constant K $_{\!\scriptscriptstyle D}$.

No Load Speed (S $_{\rm NL}$) is the theoretical no load speed of the motor with the design voltage applied.

BEMF Constant (K_B) is the ratio of voltage generated in the winding to the speed of the rotor. K_B is proportional to K_T .

Terminal Resistance (R_M) is the winding resistance measured between any two leads of the winding in either a delta or wye configuration at 25°C.

Terminal Inductance (L_M) is the winding inductance measured between any two leads of the winding in either delta or wye configuration at 25°C.

Mechanical Data

Rotor inertia (J_{M}) is the moment of inertia of the rotor about its axis of rotation.

Motor Weight (W_{M}) is the weight of the standard motor.

Number of Poles (N_P) is the number of permanent magnet poles of the rotor. For the standard BH Series motors this is four poles (two pole pairs).

Speed-Torque Curves

BH Series curves are for the standard catalog designs. The curves are based upon a 115°C rise over the ambient temperature.

The temperature rise of the example motors for a particular loadpoint is given in the tabulated data and differs from model to model.

Motor Connections and Commutation Logic

MOTOR EXCITATION SEQUENCE AND SENSOR OUTPUT LOGIC FOR CW ROTATION VIEWING LEADWIRE END.

HALL EFFECT CONNECTION DIAGRAM

